
Red Hat Enterprise Linux libgcrypt
Cryptographic Module v4.0

Red Hat Enterprise Linux libgcrypt
Cryptographic Module v5.0

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.2

Last update: 2017-07-03

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 1 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://www.atsec.com/

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Table of Contents
1 Introduction ... 3
2 Cryptographic Module Specification .. 4

2.1Module Overview... 4
2.2FIPS 140-2 validation... 6
2.3Modes of Operations.. 7

3 Cryptographic Module Ports and Interfaces ... 9
4 Roles, Services and Authentication ... 10

4.1Roles.. 10
4.2Services... 10
4.3Authentication... 14

5 Physical Security ... 15
6 Operational Environment .. 16

6.1Applicability... 16
6.2Policy... 16

7 Cryptographic Key Management ... 17
7.1Random Number Generation... 17
7.2Key / Critical Security Parameter (CSP) Access.. 18
7.3Key / CSP Storage.. 18
7.4Key / CSP Zeroization... 18

8 Self Tests ... 19
8.1Power-Up Tests... 19

8.1.1Integrity Tests... 19
8.1.2Cryptographic algorithm tests.. 19

8.2On-Demand self-tests.. 20
8.3Conditional Tests.. 20

9 Guidance ... 21
9.1Crypto Officer Guidance...21
9.2User Guidance... 22

9.2.1Three-key Triple-DES.. 22
10 Mitigation of Other Attacks ..23
Appendix A Glossary and Abbreviations ... 25
Appendix B References .. 27

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 2 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

1 Introduction
This document is the non-proprietary Security Policy for the Red Hat Enterprise Linux
libgcrypt Cryptographic Module v4.0 and Red Hat Enterprise Linux libgcrypt Cryptographic
Module v5.0. It contains the security rules under which the module must operate and
describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal
Information Processing Standards Publication 140-2) for a Security Level 1 module.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 3 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

2 Cryptographic Module Specification

2.1 Module Overview
The Red Hat Enterprise Linux libgcrypt Cryptographic Module v4.0 and Red Hat Enterprise
Linux libgcrypt Cryptographic Module v5.0 (hereafter referred to as “the module”) is a
software library implementing general purpose cryptographic algorithms. The module
provides cryptographic services to applications running in the user space of the underlying
operating system through an application program interface (API).

The module is implemented as a set of shared libraries / binary files; as shown in the diagram
below, the shared library files and the integrity check file used to verify the module's integrity
constitute the logical cryptographic boundary:

Figure 1: Software Block Diagram

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 4 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

libgcrypt Cryptographic Module
Boundary

Kernel

User

System Physical Boundary

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

The module is aimed to run in a general purpose computer. The physical boundary is the
surface of the case of the target platform, as shown in the diagram below:

All components of the module will be in the libgcrypt RPM. The following RPMs files constitute
the module:

• Red Hat Enterprise Linux libgcrypt Cryptographic Module v4.0: libgcrypt-1.5.3-
12.el7_1.1.rpm

• Red Hat Enterprise Linux libgcrypt Cryptographic Module v5.0: libgcrypt-1.5.3-
14.el7.rpm

When installed on the system, the module comprises the following files:

• /usr/lib64/libgcrypt.so.11.8.2

• /usr/lib64/.libgcrypt.so.11.hmac

• /usr/lib/libgcrypt.so.11.8.2

• /usr/lib/.libgcrypt.so.11.hmac

Note: the files /usr/lib64/libgcrypt.so.11 and /usr/lib/libgcrypt.so.11 are symlinks respectively
to /usr/lib64/libgcrypt.so.11.8.2 and /usr/lib/libgcrypt.so.11.8.2; the files
/usr/lib64/libgcrypt.so.hmac and /usr/lib/libgcrypt.so.hmac are symlinks respectively to
/usr/lib64/.libgcrypt.so.11.hmac and /usr/lib/.libgcrypt.so.11.hmac. These four symlinks files
are not part of the module

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 5 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Figure 2: Hardware Block Diagram

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

2.2 FIPS 140-2 validation
For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip
standalone cryptographic module validated at security level 1. The table below shows the
security level claimed for each of the eleven sections that comprise the FIPS 140-2 standard:

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks 1

Table 1: Security Levels

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 6 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

The Red Hat Enterprise Linux libgcrypt Cryptographic Module v4.0 module has been tested on
the following platform(s):

Construct
or

Hardware Processor Operating
System

Tested

With
AES-NI

Without
AES-NI

With
CPACF

HP Proliant DL380p Gen8 Intel®
Xeon® E5-

2600 v3
product
family

Red Hat
Enterprise
Linux 7.1

yes yes n/a

IBM POWER8 Little Endian 8286-
41A

POWER8E Red Hat
Enterprise
Linux 7.1

n/a n/a n/a

IBM z13 IBM/S390 Red Hat
Enterprise
Linux 7.1

n/a n/a yes

Table 2: Tested Platform(s) for the Red Hat Enterprise Linux libgcrypt Cryptographic Module
v4.0

The Red Hat Enterprise Linux libgcrypt Cryptographic Module v5.0 module has been tested on
the following platform(s):

Construct
or

Hardware Processor Operating
System

Tested

With
AES-NI

Without
AES-NI

With
CPACF

Dell PowerEdge R630 Intel Xeon
E5-2640 v3

Red Hat
Enterprise
Linux 7.4

no yes n/a

Table 3: Tested Platform(s) for the Red Hat Enterprise Linux libgcrypt Cryptographic Module
v5.0

The physical boundary is the surface of the case of the target platform. The logical boundary
is depicted in the software block diagram.

The module also includes algorithm implementations using Processor Algorithm Acceleration
(PAA) functions provided by the different processors supported, as shown in the following
table:

Processor Processor Algorithm Acceleration
(PAA) function

Cryptographic Module
implementation

Intel x86 AES-NI AES

Table 4: PAA function implementations

2.3 Modes of Operations
The module supports two modes of operation: FIPS approved and non-approved modes.

The mode of operation in which the module is operating can be determined by:

• If the file /proc/sys/crypto/fips_enabled exists and contains a numeric value other than
0, libgcrypt is put into FIPS mode at initialization time

• If the file /etc/gcrypt/fips_enabled exists, libgcrypt is put into FIPS mode at
initialization time. Note that this filename is hardwired and does not depend on any
configuration options.

The module turns to the FIPS approved mode after the initialization and the power-on self-
tests have completed successfully.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 7 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

When libgcrypt is in the FIPS mode of operation, the request of services involving non-FIPS
approved algorithms will be denied. However, the module does not check for approved key
sizes or approved mode of algorithms.

The services available in FIPS mode can be found in section 4.2, Table 6.

The non-Approved but allowed services can be found in section 4.2, Table 7.

The services available in non-FIPS mode can be found in section 4.2, Table 8.

Note: Using a non-Approved key sizes, algorithms or block chaining mode specified in Table 8
will result in the module implicitly entering the non-FIPS mode of operation.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 8 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

3 Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the
FIPS 140-2 validation, the physical ports are interpreted to be the physical ports of the
hardware platform on which it runs.

The logical interfaces are the application program interface (API) through which applications
request services. The following table summarizes the four logical interfaces:

Logical interface Description

Data input API input parameters for data

Data output API output parameters for data

Control input API function calls, API input parameters,
/proc/sys/crypto/fips_enabled control file,
/etc/gcrypt/fips_enabled configuration file

Status output API return codes, API output parameters

Table 5: Logical Interfaces

The Data Input interface consists of the input parameters of the API functions. The Data
Output interface consists of the output parameters of the API functions. The Control Input
interface consists of the API function calls and the input parameters used to control the
behavior of the module. The Status Output interface includes the return values of the API
functions and status sent through output parameters.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 9 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

4 Roles, Services and Authentication

4.1 Roles
The module supports the following roles:

⚫ User role: performs all services, except module installation and configuration.

⚫ Crypto Officer role: performs module installation and configuration and some basic
functions: get status function and performing self-tests.

The User and Crypto Officer roles are implicitly assumed by the entity accessing the module
services.

4.2 Services
The module supports services available to users in the available roles. All services are
described in detail in the user documentation.

The following table shows the available services, the roles allowed (“CO” stands for Crypto
Officer role and “U” stands for User role), the Critical Security Parameters involved and how
they are accessed in the FIPS mode:

Service Algorithm Key
Length

Note / Mode CAVS
Cert.

Role CSPs Access

Symmetric
encryption/
decryption

Triple-DES 168 bits Modes: ECB,
CBC, CFB64,
OFB, CTR

3-key Triple-
DES
encryption/
decryption

2-key Triple-
DES
decryption
only

Certs.
#2030,
#2031,
#2032,
#2033
and
#2034

Certs.
#2433
and
#2434

U 168 bits
Triple-DES Key

R, W, EX

AES 128, 192
and 256
bits

Modes: ECB,
CBC, CFB128,
OFB, CTR

Certs.
#3643,
#3644,
#3645,
#3646,
#3647,
#3648
and
#3649

Certs.
#4580
and
#4581

U 128/192/256
bits AES Key

R, W, EX

Get Key
Length

N/A N/A cipher_get_k
eylen()
function

N/A U N/A R

Get Block
Length

N/A N/A cipher_get_bl
ocksize()
function

N/A U N/A R

Check N/A N/A cipher_get_bl N/A U N/A R

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 10 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm Key
Length

Note / Mode CAVS
Cert.

Role CSPs Access

availability
of
Algorithm

ocksize()
function

Secure
Hash
Algorithm

(SHS)

SHA-1,

SHA-224,

SHA-256,

SHA-384,

SHA-512

N/A N/A Certs.
#3062,
#3063,
#3064,
#3065
and
#3066

Certs.
#3756
and
#3757

U N/A R, W, EX

HMAC HMAC-SHA-1,
HMAC-SHA-
224, HMAC-
SHA-256,
HMAC-SHA-
384, HMAC-
SHA-512

At least
112 bits
KS<BS,
KS=BS,
KS>BS

N/A Certs.
#2395,
#2396,
#2397,
#2398
and
#2399

Certs.
#3030
and
#3031

U MAC-key R, W, EX

RSA Key pair
generation,
signature
generation
and
verification

2048 and
3072 bits
modulus

1024 bits
signature
verification
for legacy-
use

FIPS 186-4,
RSASSA-PKCS
#1.5

RSASSA-PSS

Certs.
#1879,
#1880,
#1881,
#1882
and
#1883

Certs.
#2498
and
#2499

U RSA private
key

R, W, EX

DSA Key pair
generation,
signature
generation
and
verification

L=2048,
N=224;

L=2048,
N=256;

L=3072,
N=256;

FIPS 186-4 Certs.
#1017,
#1018,
#1019,
#1020
and
#1021

Certs.
#1214
and
#1215

U DSA private
keys

R, W, EX

Signature
verification

L=1024,
N=160

Generate
random
numbers

SP 800-90A
DRBG:

HMAC_DRBG
with SHA-
1/256/384/512

HASH_DRBG
with SHA-

N/A Fill buffer
with length
random
bytes,
function to
allocate a
memory

Certs.
#976,
#977,
#978,
#979
and
#980

U Seed W, EX

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 11 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm Key
Length

Note / Mode CAVS
Cert.

Role CSPs Access

1/256/384/512
(with and
without
prediction
resistance)

block
consisting of
nbytes of
random
bytes,
function to
allocate a
memory
block
consisting of
nbytes fresh
random
bytes using a
random
quality as
defined by
level. This
function
differs from
gcry_randomi
ze() in that
the returned
buffer is
allocated in a
“secure" area
of the
memory

Certs.
#1527
and
#1528

SP 800-90A
DRBG:

CTR_DRBG
with
derivation
function

AES
128/192/256
(with and
without
prediction
resistance)

Certs.
#972,
#973,
#974,
#975,
#976,
#977
and
#978

Certs.
#1527
and
#1528

Initialize
Module

N/A N/A Powering-up
the module

N/A U N/A EX

Selftests N/A N/A Performs
Known
Answer Test
(KAT) and
integrity
check

N/A U CO N/A EX

Zeroize
secure
memory

N/A N/A gcry_free() or
gcry_xfree()
functions

N/A U All CSPs
stored in that
secure
memory

W, EX

Release all
resources
of context
created by
gcry_cipher
_open()

N/A N/A Zeroises all
sensitive
information
associated
with this
cipher handle

N/A U Cipher secret
keys

W, EX

Release all
resources
of hash
context
created by
gcry_md_o
pen()

N/A N/A Zeroises all
sensitive
information
associated
with this
cipher handle

N/A U N/A W, EX

Release the
S-
expression
objects
SEXP

N/A N/A N/A N/A U RSA/DSA
asymmetric
key pair

R, W, EX

Show N/A N/A N/A N/A U CO N/A R, EX

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 12 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm Key
Length

Note / Mode CAVS
Cert.

Role CSPs Access

Status

Installation
and
configurati
on of the
module

N/A N/A N/A N/A CO N/A R, EX

Table 6: Cryptographic Module's Approved Services

Service
(involving
algorithm)

Note / Mode Role Acces
s

RSA Encryption/decryption: 2048, 3072 and 4096 bits U R, W,
EX

Signature generation, key generation: 4096 bits

RSA signature verification: 4096 bits

Table 7: Cryptographic Module's non-Approved but allowed in FIPS mode Services

The following table shows the available services, the roles allowed, the Critical Security
Parameters involved and how they are accessed in the non-FIPS mode:

Service
(involving
algorithm)

Note / Mode Role Access

ARC4 Encryption and decryption (stream cipher) U

Blowfish Encryption and decryption U

Camellia Encryption and decryption U

Cast5 Encryption and decryption U

CRC32 Cyclic redundancy code U

CSPRNG Cryptographically Secure Pseudorandom Number Generator U

DES Encryption and decryption (key size of 56 bits) U

El Gamal Key pair generation, encryption and decryption, signature
generation, signature verification

U

Gost 28147 encryption U

R 34.11-94 hash U

R 34.11-2012 (Stribog) hash

HMAC

(SHA1, SHA224,
SHA256, SHA384
and SHA512)

Key size < 112 bits U

IDEA Encryption and decryption U

MD4 Hashing

Digest size 128 bit

U

MD5 Hashing

Digest size 128 bit

U

OpenPGP S2K
Salted and

Password based key derivation compliant with OpenPGP
(RFC4880)

U

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 13 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Service
(involving
algorithm)

Note / Mode Role Access

Iterated/salted

RC2 Encryption and decryption based on RFC 2268 U

RIPEMD 160 Hashing U

RSA Encryption/decryption: 1024 bits

Signature generation, key generation: 1024 bits U

SEED Encryption and decryption U

Serpent Encryption and decryption U

Tiger Hashing U

Twofish Encryption and decryption U

2-key Triple-DES Encryption U

Whirlpool Hashing U

Services
available in FIPS
mode

The services available in FIPS mode can be used in non-FIPS mode

CSPs/keys separation is enforced between both modes

U

Table 8: Cryptographic Module's non-Approved Services and Algorithms

Note:

1. RSA (key wrapping; key establishment methodology between 112 and 150 bits of
encryption strength)

4.3 Authentication
The module is a Level 1 software-only cryptographic module and does not implement
authentication. The role is implicitly assumed based on the service requested.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 14 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

5 Physical Security
The module is comprised of software only and thus does not claim any physical security.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 15 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

6 Operational Environment

6.1 Applicability
The module operates in a modifiable operational environment per FIPS 140-2
level 1 specifications. The module runs on a commercially available general-
purpose operating system executing on the hardware specified in section 2.2.

The Red Hat Enterprise Linux operating system is used as the basis of other products which
include
but are not limited to:

• Red Hat Enterprise Linux Atomic Host
• Red Hat Virtualization (RHV)
• Red Hat OpenStack Platform
• OpenShift Container Platform
• Red Hat Gluster Storage
• Red Hat Ceph Storage
• Red Hat CloudForms
• Red Hat Satellite.

Compliance is maintained for these products whenever the binary is found
unchanged.

6.2 Policy
The operating system is restricted to a single operator (concurrent operators are explicitly
excluded). The application that request cryptographic services is the single user of the
module, even when the application is serving multiple clients.

In FIPS Approved mode, the ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall
be not used.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 16 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

7 Cryptographic Key Management
The application that uses the module is responsible for appropriate destruction and zeroization
of the key material. The library provides functions for key allocation and destruction, which
overwrites the memory that is occupied by the key information with “zeros” before it is
deallocated.

7.1 Random Number Generation
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for
the creation of asymmetric and symmetric keys.

The DRBG is initialized during module initialization. The module loads by default the DRBG
using HMAC_DRBG with SHA-256 and derivation function tests without prediction resistance.
The DRBG is seeded during initialization with a seed obtained from /dev/random of the
appropriate length depending on the instantiated type (see section 10 of [SP800-90A]).

The module performs continuous tests on the output of the DRBG to ensure that consecutive
random numbers do not repeat. The noise source of /dev/random also implements continuous
tests.

Here are listed the CSPs/keys details concerning storage, input, output, generation and
zeroization:

Keys/CSPs Key Generation Key Storage Key Entry/Output Key Zeroization

AES Keys Use of the module's
SP 800-90A DRBG

Application's
memory

API input/output
parameters and return
values within the
physical boundaries of
the module

Automaticly zeroized
when freeing the
cipher handler by
calling gcry_free()

Triple-DES
Keys

Use of the module's
SP 800-90A DRBG

Application's
memory

API input/output
parameters and return
values within the
physical boundaries of
the module

Automaticly zeroized
when freeing the
cipher handler by
calling gcry_free()

DSA private
keys

Use of the module's
SP 800-90A DRBG
and the modules DSA
key generation
mechanism

Application's
memory

API input/output
parameters and return
values within the
physical boundaries of
the module

Automaticly zeroized
when freeing the
cipher handler by
calling gcry_free()

RSA private
keys

Use of the module's
SP 800-90A DRBG
and the modules RSA
key generation
mechanism

Application's
memory

API input/output
parameters and return
values within the
physical boundaries of
the module

Automaticly zeroized
when freeing the
cipher handler by
calling gcry_free()

SP 800-90A
DRBG
Entropy
string

The seed data
obtained from
hardware random
number generator
/dev/random

Application's
memory

N/A Automaticly zeroized
when freeing DRBG
handler by calling
gcry_free()

SP 800-90A
DRBG Seed
and internal
state values
(C and V
values)

Based on entropy
string as defined in
SP 800-90A

Application's
memory

N/A Automaticly zeroized
when freeing DRBG
handler by calling
gcry_free()

HMAC Keys Use of the module's
SP 800-90A DRBG

Application's
memory

API input/output
parameters and return
values within the

Automaticly zeroized
when freeing the
cipher handler by

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 17 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

physical boundaries of
the module

calling gcry_free()

Table 9: Keys/CSPs

7.2 Key / Critical Security Parameter (CSP) Access
An authorized application as user (the User role) has access to all key data generated during
the operation of the module. Moreover, the module does not support the output of
intermediate key generation values during the key generation process.

7.3 Key / CSP Storage
Public and private keys are provided to the module by the calling process, and are destroyed
when released by the appropriate API function calls. The module does not perform persistent
storage of keys.

7.4 Key / CSP Zeroization
The memory occupied by keys is allocated by regular memory allocation operating system
calls. The application is responsible for calling the appropriate destruction functions provided
in the module's API by using the API function gcry_free(). The destruction functions overwrite
the memory occupied by keys with “zeros” and deallocates the memory with the regular
memory deallocation operating system call. In case of abnormal termination, or swap in/out
of a physical memory page of a process, the keys in physical memory are overwritten by the
Linux kernel before the physical memory is allocated to another process.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 18 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

8 Self Tests

8.1 Power-Up Tests
The module performs power-up tests at module initialization to ensure that the module is not
corrupted and that the cryptographic algorithms work as expected. The selftests are
performed without any user intervention.

While the module is performing the power-up tests, services are not available and input or
output is not possible: the module is single-threaded and will not return to the calling
application until the self-tests are completed successfully.

8.1.1 Integrity Tests
The integrity of the module is verified comparing the HMAC-SHA-256 value calculated at run
time with the HMAC value stored in the module that was computed at build time.

8.1.2 Cryptographic algorithm tests
The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in
the approved mode of operation, using the known answer tests (KAT) shown in the following
table:

Algorithm Tests

Triple-DES KAT, encryption and decryption tested separately

AES 128 KAT, encryption and decryption tested separately

AES 192 KAT, encryption and decryption tested separately

AES 256 KAT, encryption and decryption tested separately

SHA-1 KAT

SHA-224 KAT

SHA-256 KAT

SHA-384 KAT

SHA-512 KAT

HMAC SHA-1 KAT

HMAC SHA-224 KAT

HMAC SHA-256 KAT

HMAC SHA-384 KAT

HMAC SHA-512 KAT

DRBG (Hash, HMAC and
CTR-based)

KAT

RSA KAT of signature generation/verification

DSA PCT of signature generation/verification

Module Integrity test HMAC SHA-256

Table 10: Self-tests

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 19 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

8.2 On-Demand self-tests
The module provides the Self-Test service to perform self-tests on demand. This service
performs the same cryptographic algorithm tests executed during power-up, plus some
extended self-tests, such as testing additional block chaining modes. During the execution of
the on-demand self-tests, services are not available and no data output or input is possible.
To invoke the on-demand self-tests, the user can invoke the gcry_control(GCRYCTL_SELFTEST)
command.

8.3 Conditional Tests
The module performs conditional tests on the cryptographic algorithms shown in the following
table:

Algorithm Test

DRBG The continuous random number test is only used in FIPS mode. The RNG
generates random numbers per block size depending on the underlying
DRBG type (CTR; HMAC or Hash); the 1st block generated per context is
saved in the context and another block is generated to be returned to the
caller. Each block is compared against the saved block and then stored in
the context. If a duplicated block is detected, an error is signaled and the
library is put into the “Fatal-Error" state.
(random/drbg.c:cdrbg_fips_continuous_test)

RSA The test creates a random number of the size of p-64 bits and encrypts
this value with the public key. Then the test checks that the encrypted
value does not match the plaintext value. The test decrypts the ciphertext
value and checks that it matches the original plaintext. The test will then
generate another random plaintext, sign it, modify the signature by
incrementing its value by 1, and verify that the signature verification fails.
(cipher/rsa.c:test_keys())

DSA The test uses a random number of the size of the q parameter to create a
signature and then checks that the signature verification is successfull. As
a second signing test, the data is modified by incrementing its value and
then is verified against the signature with the expected result that the
verification fails. (cipher/dsa.c:test_keys())

Table 11: Conditional Tests

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 20 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

9 Guidance
The following guidance items are to be used for assistance in maintaining the module's
validated status while in use.

9.1 Crypto Officer Guidance
The version of the RPMs containing the FIPS validated Module is stated in section 1 above.

The RPM package of the Module can be installed by standard tools recommended for the
installation of RPM packages on a Red Hat Enterprise Linux system (for example, yum, rpm,
and the RHN remote management tool).

For proper operation of the in-module integrity verification, the prelink has to be disabled.
This can be done by setting PRELINKING=no in the /etc/sysconfig/prelink configuration file. If
the libraries were already prelinked, the prelink should be undone on all the system files
using the 'prelink -u -a' command.

The ciphers listed in Table 8 are not allowed to be used.

To bring the Module into FIPS Approved mode, perform the following:
1. Install the dracut-fips package:

yum install dracut-fips

2. Recreate the INITRAMFS image:

dracut -f

After regenerating the initramfs, the Crypto Officer has to append the following string to the
kernel command line by changing the setting in the boot loader:

fips=1

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition
of /boot or /boot/efi> must be supplied. The partition can be identified with the command

"df /boot"
or

"df /boot/efi"

respectively. For example:

$ df /boot
Filesystem 1K-blocks Used Available

Use% Mounted on
/dev/sda1 233191 30454 190296

14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string
needs to be appended to the kernel command line:

"boot=/dev/sda1"

Reboot to apply these settings.

Because FIPS 140-2 has certain restrictions on the use of cryptography which are not always
wanted, the Module needs to be put into FIPS Approved mode explicitly: if the file
/proc/sys/crypto/fips_enabled exists and contains a numeric value other than 0, the Module is
put into FIPS Approved mode at initialization time. This is the mechanism recommended for
ordinary use, activated by using the fips=1 option in the boot loader, as described above.

If an application that uses the Module for its cryptography is put into a chroot environment,
the Crypto Officer must ensure one of the above methods is available to the Module from
within the chroot environment to ensure entry into FIPS Approved mode. Failure to do so will
not allow the application to properly enter FIPS Approved mode.
Once the Module has been put into FIPS Approved mode, it is not possible to switch back to
standard mode without terminating the process first.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 21 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

If an application that uses the Module for its cryptography is put into a chroot environment,
the Crypto Officer must ensure one of the above methods is available to the Module from
within the chroot environment to ensure entry into FIPS approved mode. Failure to do so will
not allow the application to properly enter FIPS approved mode.

Because FIPS 140-2 has certain restrictions on the use of cryptography which are not always
wanted, libgcrypt needs to be put into FIPS mode explicitly. To switch libgcrypt into this mode,
the file /proc/sys/crypto/fips_enabled must contain a numeric value other than 0. If the
application requests FIPS mode, use the control command

 gcry_control(GCRYCTL_FORCE_FIPS_MODE).

This must be done prior to any initialization (i.e. before the gcry_check_version() function).

Once libgcrypt has been put into FIPS mode, it is not possible to switch back to standard
mode without terminating the process first. If the logging verbosity level of libgcrypt has been
set to at least 2, the state transitions and the self tests are logged.

9.2 User Guidance
Applications using libgcrypt need to call
gcry_control(GCRYCTL_INITIALIZATION_FINISHED, 0) after initialization is done: that
ensures that the DRBG is properly seeded, among others.
gcry_control(GCRYCTL_TERM_SECMEM)needs to be called before the process is terminated.

The function gcry_set_allocation_handler()may not be used.

The user must not call malloc/free to create/release space for keys, let libgcrypt manage
space for keys, which will ensure that the key memory is overwritten before it is released.

See the documentation file doc/gcrypt.texi within the source code tree for complete
instructions for use.

The information pages are included within the developer package. The user can find the
documentation at the following location after having installed the developer package:

/usr/share/info/gcrypt.info-1.gz
/usr/share/info/gcrypt.info-2.gz
/usr/share/info/gcrypt.info.gz

9.2.1 Three-key Triple-DES
It is the calling application’s responsibility to make sure that the three keys k1, k2 and k3 are
independent. Two-key triple-DES usage will bring the module into the non-Approved mode of
operation implicitly.

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 22 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

10 Mitigation of Other Attacks
libgcrypt uses a blinding technique for RSA decryption to mitigate real world timing attacks
over a network: Instead of using the RSA decryption directly, a blinded value (y = x·re mod n)
is decrypted and the unblinded value (x' = y'·r-1 mod n) returned. The blinding value “r” is a
random value with the size of the modulus “n” and generated with `GCRY_WEAK_RANDOM'
random level.

Weak Triple-DES keys are detected as follows:

In DES there are 64 known keys which are weak because they produce only one, two, or four
different subkeys in the subkey scheduling process. The keys in this table have all their parity
bits cleared.

static byte weak_keys[64][8] =
{
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, /*w*/
 { 0x00, 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e },
 { 0x00, 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0 },
 { 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe },
 { 0x00, 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e }, /*sw*/
 { 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00 },
 { 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe },
 { 0x00, 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0 },
 { 0x00, 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0 }, /*sw*/
 { 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe },
 { 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00 },
 { 0x00, 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e },
 { 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe }, /*sw*/
 { 0x00, 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0 },
 { 0x00, 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e },
 { 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00 },
 { 0x1e, 0x00, 0x00, 0x1e, 0x0e, 0x00, 0x00, 0x0e },
 { 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e, 0x00 }, /*sw*/
 { 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0, 0xfe },
 { 0x1e, 0x00, 0xfe, 0xe0, 0x0e, 0x00, 0xfe, 0xf0 },
 { 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00, 0x00 },
 { 0x1e, 0x1e, 0x1e, 0x1e, 0x0e, 0x0e, 0x0e, 0x0e }, /*w*/
 { 0x1e, 0x1e, 0xe0, 0xe0, 0x0e, 0x0e, 0xf0, 0xf0 },
 { 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe, 0xfe },
 { 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00, 0xfe },
 { 0x1e, 0xe0, 0x1e, 0xe0, 0x0e, 0xf0, 0x0e, 0xf0 }, /*sw*/
 { 0x1e, 0xe0, 0xe0, 0x1e, 0x0e, 0xf0, 0xf0, 0x0e },
 { 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe, 0x00 },
 { 0x1e, 0xfe, 0x00, 0xe0, 0x0e, 0xfe, 0x00, 0xf0 },
 { 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe }, /*sw*/
 { 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0, 0x00 },
 { 0x1e, 0xfe, 0xfe, 0x1e, 0x0e, 0xfe, 0xfe, 0x0e },
 { 0xe0, 0x00, 0x00, 0xe0, 0xf0, 0x00, 0x00, 0xf0 },
 { 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e, 0xfe },
 { 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0, 0x00 }, /*sw*/
 { 0xe0, 0x00, 0xfe, 0x1e, 0xf0, 0x00, 0xfe, 0x0e },
 { 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00, 0xfe },
 { 0xe0, 0x1e, 0x1e, 0xe0, 0xf0, 0x0e, 0x0e, 0xf0 },
 { 0xe0, 0x1e, 0xe0, 0x1e, 0xf0, 0x0e, 0xf0, 0x0e }, /*sw*/
 { 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe, 0x00 },
 { 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00, 0x00 },
 { 0xe0, 0xe0, 0x1e, 0x1e, 0xf0, 0xf0, 0x0e, 0x0e },
 { 0xe0, 0xe0, 0xe0, 0xe0, 0xf0, 0xf0, 0xf0, 0xf0 }, /*w*/
 { 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe, 0xfe },
 { 0xe0, 0xfe, 0x00, 0x1e, 0xf0, 0xfe, 0x00, 0x0e },
 { 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e, 0x00 },
 { 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0, 0xfe }, /*sw*/

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 23 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

 { 0xe0, 0xfe, 0xfe, 0xe0, 0xf0, 0xfe, 0xfe, 0xf0 },
 { 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe },
 { 0xfe, 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0 },
 { 0xfe, 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e },
 { 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00 }, /*sw*/
 { 0xfe, 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0 },
 { 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe },
 { 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00 },
 { 0xfe, 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e }, /*sw*/
 { 0xfe, 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e },
 { 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00 },
 { 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe },
 { 0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0 }, /*sw*/
 { 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00 },
 { 0xfe, 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e },
 { 0xfe, 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0 },
 { 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe } /*w*/ };

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 24 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Appendix A Glossary and Abbreviations

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining Message Authentication Code

CFB Cipher Feedback

CMAC Cipher-based Message Authentication Code

CMT Cryptographic Module Testing

CMVP Cryptographic Module Validation Program

CPACF Central Processor Assist for Cryptographic Functions

CSP Critical Security Parameter

CTR Counter Mode

CVT Component Verification Testing

DES Data Encryption Standard

DFT Derivation Function Test

DSA Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards Publication

FSM Finite State Model

GCM Galois Counter Mode

HMAC Hash Message Authentication Code

KAT Known Answer Test

MAC Message Authentication Code

NIST National Institute of Science and Technology

NDRNG Non-Deterministic Random Number Generator

OFB Output Feedback

OS Operating System

PAA Processor Algorithm Acceleration

PR Prediction Resistance

PSS Probabilistic Signature Scheme

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 25 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

RNG Random Number Generator

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSH Secure Shell

TDES Triple DES

UI User Interface

XTS XEX-based Tweaked-codebook mode with ciphertext Stealing

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 26 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

Appendix B References
FIPS180-4 Secure Hash Standard (SHS)

March 2012
http://csrc.nist.gov/publications/fips/fips180-4/fips 180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198 1/FIPS-198 1_final.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1
February 2003
http://www.ietf.org/rfc/rfc3447.txt

RFC3394 Advanced Encryption Standard (AES) Key Wrap Algorithm
September 2002
http://www.ietf.org/rfc/rfc3394.txt

RFC5649 Advanced Encryption Standard (AES) Key Wrap with Padding
Algorithm
September 2009
http://www.ietf.org/rfc/rfc5649.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block
Cipher Modes of Operation Methods and Techniques
December 2001
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication
May 2005
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block
Cipher Modes of Operation: the CCM Mode for Authentication and
Confidentiality
May 2004
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated
July20_2007.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
November 2007
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38E NIST Special Publication 800-38E - Recommendation for Block
Cipher Modes of Operation: The XTS AES Mode for Confidentiality on
Storage Devices
January 2010
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 27 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

138-30 / 138-31 FIPS 140-2 Non-Proprietary Security Policy

SP800-38F NIST Special Publication 800-38F - Recommendation for Block
Cipher Modes of Operation: Methods for Key Wrapping
December 2012
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-56A NIST Special Publication 800-56A Revision 2 - Recommendation for
Pair Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography
May 2013
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800 56Ar2.pdf

SP800-56C Recommendation for Key Derivation through Extraction-then-
Expansion
November 2011
http://csrc.nist.gov/publications/nistpubs/800-56C/SP-800-56C.pdf

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for
the Triple Data Encryption Algorithm (TDEA) Block Cipher
January 2012
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

SP800-90A NIST Special Publication 800-90A - Recommendation for Random
Number Generation Using Deterministic Random Bit Generators
January 2012
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

SP800-90B NIST Draft Special Publication 800-90B - Recommendation for the
Entropy Sources Used for Random Bit Generation
August 2012
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

SP800-108 NIST Special Publication 800-108 - Recommendation for Key
Derivation Using Pseudorandom Functions
October 2009
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

SP800-131A NIST Special Publication 800-131A - Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and Key
Lengths
January 2011
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

©2017 Red Hat Enterprise Linux / atsec information security corporation Page 28 of 28
This document can be reproduced and distributed only whole and intact, including this copyright notice.

	1 Introduction
	2 Cryptographic Module Specification
	2.1 Module Overview
	2.2 FIPS 140-2 validation
	2.3 Modes of Operations

	3 Cryptographic Module Ports and Interfaces
	4 Roles, Services and Authentication
	4.1 Roles
	4.2 Services
	4.3 Authentication

	5 Physical Security
	6 Operational Environment
	6.1 Applicability
	6.2 Policy

	7 Cryptographic Key Management
	7.1 Random Number Generation
	7.2 Key / Critical Security Parameter (CSP) Access
	7.3 Key / CSP Storage
	7.4 Key / CSP Zeroization

	8 Self Tests
	8.1 Power-Up Tests
	8.1.1 Integrity Tests
	8.1.2 Cryptographic algorithm tests

	8.2 On-Demand self-tests
	8.3 Conditional Tests

	9 Guidance
	9.1 Crypto Officer Guidance
	9.2 User Guidance
	9.2.1 Three-key Triple-DES

	10 Mitigation of Other Attacks
	Appendix A Glossary and Abbreviations
	Appendix B References

